Water Supply Trigger Point Factors and Recommendations

Council Presentation August 27, 2019

Bottom Line Up Front

Why are we here?

- Desire to develop a drought-proof water supply to meet future needs of the Coastal Bend
- Water Supply has decreased due to:
 - Reduced Choke Canyon Reservoir and Lake Corpus Christi storage capacity
 - Reduced quantity of Lake Texana contract water
- Water Demand is increasing due to economic growth
- To meet expected Water Demand, we need to move forward with the procurement of a Seawater Desalination Plant now
- Review alternative water supply options

The Important Questions

What do we need?

A new drought-proof water supply

When do we need it?

 Demand projections indicate a new water supply is needed in the 2022 to 2023 time frame

Can we afford it?

Yes...based on financial projections and increases in consumption, we
have the financial resources available to acquire a new water supply

Have we have started and do we need to continue?

• Due to long lead times for permitting, financing, procurement, design, construction, and start-up, we need to continue the process underway

Timeline for Trigger Point Development

January 2019 City Council, directed staff to begin looking at best trigger point for a new supply

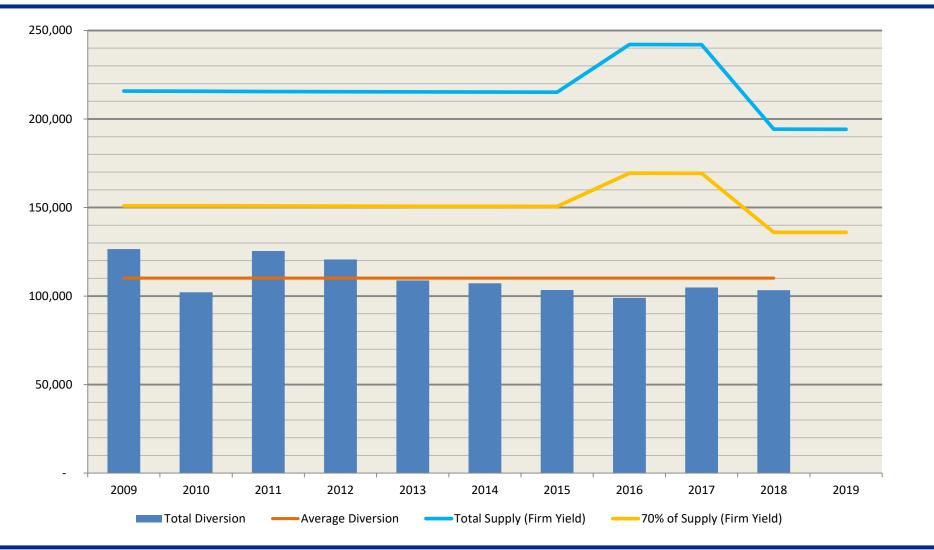
April 11, 2019 Staff organized a small group of stakeholders to examine

Today

Recommendation

Identify and assess key factors affecting "implement" decision

Key Factors: Supply -- Demand -- Financial



Supply Assumptions

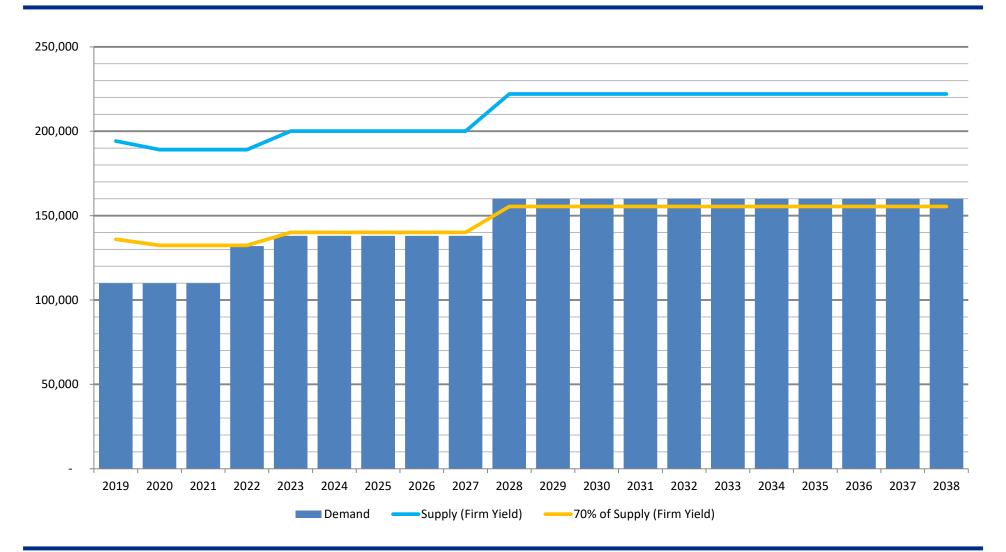
- Recent Reduction in Supply:
 - Change in water supply model due to the new drought of record
 - Change in storage capacity at reservoirs due to sedimentation
 - Change in quantity available from Lake Texana
- Environmental Permits for Seawater Desalination:
 - 30 MGD at Inner Harbor
 - 40 MGD at La Quinta Channel
- Desalination Plants designed to be expandable from 10 MGD to 20 MGD output
 - Future expansion to permit limits is possible at additional future cost
- Time required to expand:
 - Plants will be designed to expand to 20 MGD output in 12 months or less

Supply-Demand History

Supply Takeaways

- A drought-proof water supply is needed
 - The Coastal Bend is 100% dependent on surface (rain) water to meet demand
 - A non-surface water source is needed to ensure supply during drought and to meet future increases in demand
- Seawater Desalination provides a non-surface water source
 - Can be expanded to respond to future drought
 - Can be expanded to meet future demand
 - Can be designed to be expandable at affordable cost
 - Can be designed to be expandable in 12 months or less
- Demand projected to approach or exceed 70% of firm yield is a trigger point to increase Supply

Demand Assumptions


- Large increases in Water Demand are projected to occur in 2022, 2023, and 2028
 Known Projects:
 - 2022 --- 25 MGD Gulf Coast Growth Ventures (GCGV)
 - 2023 --- 5 MGD Steel Dynamics Southwest, LLC

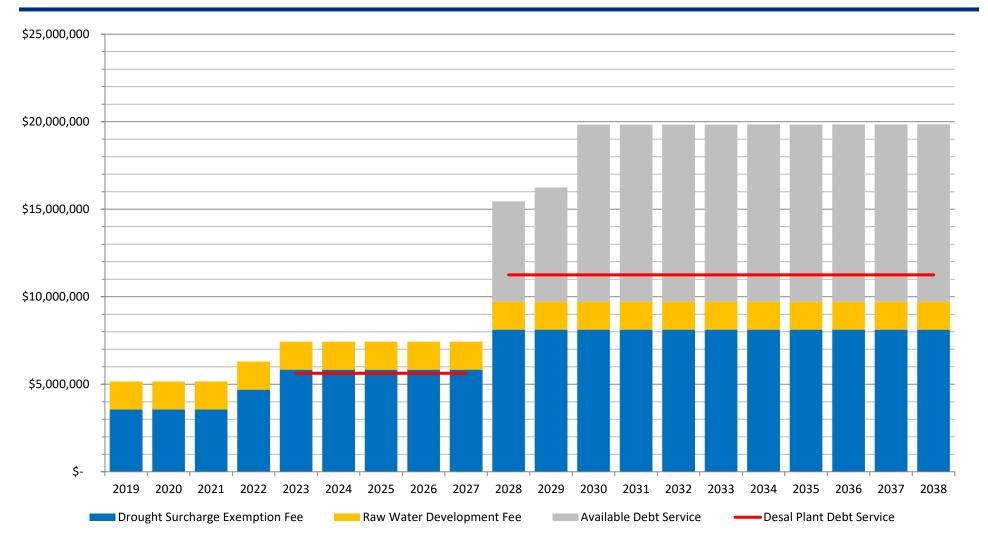
Future Projects:

- 2028 --- 25 MGD Large volume user similar to GCGV
- A new Water Supply designed to meet new Water Demand should be in place before the new demand is consuming water
- A Seawater Desalination plant requires 24 months to design, build, and start-up

Supply-Demand Projection

Demand Takeaways

- Demand projected to approach or exceed 70% of firm yield is a trigger point to increase Supply
- Demand will reach 70% of firm yield by 2022 2023
 - Due to design, build, and start-up lead time (24 months) for a new Seawater
 Desalination Plant, we need to keep moving forward energetically
 - Need to start design and build of first Seawater Desalination Plant in early 2021
- After first plant is operational, Water Demand will increase in the future to the point where a second plant will be needed
 - A second Desalination Plant is dependent on the timing of the next large volume user on the northside
 - Construction of a second Desalination Plant should begin 24-months before the increase in demand is expected



Financial Assumptions

- 10 MGD Seawater Desalination Plant (expandable to 20MGD)
 - Construction cost of \$140,000,000 (estimated)
- Cost to expand:
 - Expansion from 10 MGD to 20 MGD output estimated to cost \$50,000,000
 - Membranes, Pretreatment, and Post-Treatment Equipment
- State Water Implementation Fund for Texas (SWIFT) Financing
 - 30 year loan at 2% interest (estimated)
- Drought Surcharge Exemption Fee
 - Large Volume Users
 - \$0.25 per 1000 gallons (volume of ≈ 14.2 million kgal)
 - 2019 annual revenue --- \$3,500,000+
- New demand in 2022 and 2028 will increase Drought Surcharge Exemption Fee revenue
 - 2022 annual revenue --- \$5,800,000+
 - 2028 annual revenue --- \$8,100,000+

Financial Assessment

Financial Takeaways

- Large increase in Water Demand in 2022 will occur
- Seawater Desalination Plant construction cost estimated at \$140,000,000
 - 10 MGD expandable to 20 MGD Plant
- Working with the Texas Water Development Board on financing (SWIFT Loan)
 - Most favorable financing terms available
- Use of Drought Surcharge Exemption Fee + Available Debt Service + Raw Water Development Charge will pay for Seawater Desalination plants and expansions

Recommendation

- Secure a drought-proof water supply that meets future needs of the Coastal Bend
- Develop procurement process for a Seawater Desalination Plant now
- Move forward with the application process for a SWIFT Loan
- Based on supply and demand projections, the first Seawater
 Desalination Plant needs to be operational (supplying water) in early
 2023

Alternative Water Supply Options

- Water Reuse Project
 - Creating Water Reuse Plan that will establish process to identify feasible reuse ideas
- Aquifer Storage and Recovery Project
 - Corpus Christi Aquifer Storage and Recovery Feasibility Project Phase 1 is currently being completed
- Groundwater Project
 - Evaluating the potential of groundwater as a supply option
- Seawater Desalination Project
 - Seawater Desalination is the number one priority
 - Siting and Permitting phase underway
 - Virtually unlimited drought-proof supply of water available